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Abstract
We solve the quantum mechanical problem for electrons confined to two coupled metallic rings
which form an ‘8’ structure. The solution is achieved by gluing the wavefunction at the
interface of the two rings using a modification of Dirac’s constrained method. The Heisenberg
equation of motion for the wavefunction is a fermionic and bosonic mixture, suggesting that it
is impossible to solve the problem for two coupled rings by standard boundary conditions.

As an explicit demonstration of our method we present an exact solution for the persistent
current on coupled rings in the presence of two external magnetic fluxes. For large coupled
rings with equal fluxes we find that the persistent current in the two coupled rings is equal to
that in a single ring. For opposite fluxes the energy has a chaotic structure. For both cases the
periodicity is h/e.

In order to compare our theory to the experimental situations we consider two rings with a
finite width in the ballistic regime in the presence of 2KF impurity scattering.

1. Introduction

The physics of a newly fabricated material such as graphene [1]
and nanotubes [2] requires exact methods for computing the
wavefunction which is essential to determine their physical
properties. In particular the wavefunction coherence at
low temperatures in the ballistic regime is sensitive to the
geometrical topology and is path-dependent. One of the
important topological characterizations is the number of holes
on a closed surface. The number of holes formed thereon is
often referred to as a genus number g. In the past most of the
studies have been devoted to the g = 1 case. Examples of
g = 1 are given by a Torus geometry and g = 2 corresponds
to a double Torus used for the two-dimensional quantum Hall
problem [3].

In one dimension the g = 1 corresponds to the Aharonov–
Bohm geometry [4] leading to a famous theorem [5] that in
the presence of an external flux all the physical properties are
periodic with the flux period �0 = h/e independent from
microscopic details such as electron–electron interactions or
disorder. Recently the g = 1 case has been investigated for
a ring structure of graphene [6] while genus g = 2 has been
realized in carbon nanotubes [7].

We believe that the method for investigating high genus
material should be based on gluing the wavefunction between
different sectors. This can be achieved by using the method

of constraints. Constraints have a long history in condensed
matter physics. In particular it has been shown that, using
constraints, strong coupling problems such as the Hubbard
model can be solved [8–13].

Here we propose to investigate the wavefunction for genus
g = 2 with the simplest geometry being two rings perfectly
glued at one point to form a character ‘8’ structure. Our
main result for this case is that, independent of the form of
the Hamiltonian, the solution for the wavefunction is given
in terms of the modified Heisenberg equation of motion. For
any fermionic operator ̂OF in the presence of two fermionic
second-class constraints Q+ and Q which obey [Q, Q+]+ =
QQ+ + Q+ Q �= 0 and a Hamiltonian H we find ih̄ d̂OF

dt =
[̂OF, H ]D.

The symbol [, ]D stands for a mixture of commutators [, ]
and anti-commutators [, ]+. The explicit form of the new
commutator is given by
[

̂OF, H
]

D
≡ [̂OF, H ] − [̂OF, Q]+([Q, Q+]+)−1[Q+, H ]

− [̂OF, Q+]+([Q+, Q]+)−1[Q, H ].
This result suggests that the gluing of the wavefunction

cannot be described within the regular method of matching
boundary conditions! To understand why this is the case
we assume that the gluing of the wavefunction is introduced
with the help of delta function potentials which enforce the
constraints. The potentials acts as Lagrange multipliers. For a
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fixed Lagrange multiplier the problem reduces to a quantum
mechanical problem with a delta function potential. Such
a problem can be solved using boundary conditions. But a
physical result is obtained only after we average over all the
possible delta function potentials.

Our solution is obtained using a modification of the Dirac
bracket [18] for electronic systems. Enforcing the constraint
by a delta function allows the identification of an effective
physical model, of a capacitor connecting the two rings. In the
limit of a zero capacitance an infinite impurity Hubbard [8–11]
interaction (at the contact point) is obtained once we perform
the formal identification of the ring index with the spin index.

As an explicit demonstration for the g = 2 structure we
choose to solve the problem of persistent currents. The g = 1
case in one dimension is represented by the Aharonov–Bohm
geometry which in the presence of an external magnetic flux
gives rise to a non-dissipative current for mesoscopic metallic
rings [12–17, 21] named the persistent current. To the best
of our knowledge the persistent current problem for a genus
g = 2 has not been considered before. On the other hand a
variety of geometries of coupled rings have been considered in
the literature [15, 16, 21]. In particular we mention the example
of two coupled rings which are connected by two arms which
have a common grounded point [15]. Due to this grounded
point the genus g = 2 topology is lost. For this case it was
possible to use current loop equations and solve the current
problem using boundary conditions. In our case no grounded
point exist and therefore no simple boundary conditions can be
used.

In this paper, we report the exact solution for multiple
connected geometries, such as a geometry with two holes
two rings perfectly glued at one point to form a character
‘8’ structure. The geometry modifies the global properties
of the wavefunction, and the presence of magnetic fluxes
generates persistent currents with complicated periods. We
present an exact analytical solution for the eigenvalues and
compute the persistent current for two coupled rings with
a character ‘8’ structure for two different fluxes. We
solve the problem by modeling the gluing of the two rings
using fermionic constraints with anti-commuting Lagrange
multipliers which can be viewed as a capacitive impurity model
EC = (ρ1(x=0)−ρ2(x=0))2

2C0
coupled to the two rings in the limit of

a zero capacitance C0 where ρ1(x = 0) is the density at the
point contact for ring one and ρ2(x = 0) is the density for the
second ring.

The analytical results are investigated numerically using
Mathematica. When the two fluxes on both rings are the same,
we find a simple relation between the single-ring (g = 1)
current I (g=1)(flux; N) and the double-ring (g = 2) current
I (g=2)(flux; N). At T = 0 we define I (g=2)(flux; N) =
r(N)I (g=1)(flux; N) where r(N) is the ratio between the two
currents. The ratio r(N) is a function of the number of sites N
and obeys r(N) → 1 for N → ∞. The effects of the electron–
electron interaction away from half-filling can be investigated
within a Luttinger liquid theory. The point contact between
the rings is described by a delta function potential where the
strength of the potential is given by a Lagrange multiplier.
This situation is equivalent to an effective Gaussian impurity

in a Luttinger liquid theory. Contrary to a regular impurity the
Gaussian point contact impurity is an irrelevant perturbation
for moderate interactions, (only for interactions which have an
interaction parameter Kc < 1/2 can it suppress the current).
This means that for large rings and moderate electron–electron
interactions 1/2 < Kc < 1 the effect of the point contact will
not affect the current amplitudes. This situation changes when
we allow for real impurity scatterings. Using the Luttinger
liquid theory presented in [19] we showed that the presence of
a 2KF impurity scattering in a Luttinger liquid gives rise to a
drastic enhancement of the kinetic mass of the zero mode [19],
resulting in a drastic decrease of the current amplitudes in each
ring.

We have used the results given in [19] to compare our
theory to the experimental situations. We have shown that in
the ballistic regime the effects of the 2KF impurity scattering
in a multichannel Luttinger theory (due to the finite width of
the rings) gives a good agreement with the current observed in
the experiment of [17]. This allows us to propose a ballistic
(non-diffusive) explanation for the experiment of a line of
GaAs/GaAlAs coupled rings [17].

The plan of this paper is as followings: in section 2 we
present the exact analytical results for the two rings perfectly
glued at one point to form a character ‘8’ structure.

In section 3 we present the application of our theory to
the problem of persistent currents for two coupled rings in the
presence of two external fluxes.

In section 4 we present our numerical results for two
coupled rings for equal and opposite fluxes.

Section 5 is devoted to discussions.
We show that the method presented can be extended to two

rings with a finite width.
Using the results given in [19] (for a one-dimensional

persistent current with a 2KF impurity scattering) we extend
the results to a multichannel persistent current problem.

We show that the theory developed for the ballistic
regime might explain the results for the GaAs/GaAlAs coupled
rings [17].

A generalization of our method to genus g > 2
multicoupled rings is presented.

The constraint for the two rings can be understood as a
capacitor model EC = (ρ1(x=0)−ρ2(x=0))2

2C0
(ρα(x = 0), α = 1, 2

is the charge on each ring). This problem is analyzed by the
method of matching the boundary conditions. A physically
universal result is obtained only after the limit C0 → 0 is taken
or the average over all the possible potentials is performed.

2. Exact solution for two rings perfectly glued to
form a character ‘8’ structure

In this section we present the solution of two coupled rings for
an arbitrary Hamiltonian. We consider first a single channel
and show that the results are applicable for rings with a finite
width.

Dirac has shown that for the second-class constraints the
Poisson brackets are replaced by the Dirac brackets [18].
For an even number of constraints qr with non-zero Poisson
brackets one finds that the equations of motions are governed
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by the Dirac [18] brackets which replace the Poisson bracket
{A, B} by {A, B}D = {A, B} −∑

r,r ′ {A, qr }crr ′ {qr ′, B}. The
matrix crr ′ is the inverse of the Poisson bracket {qr , qs} and
is computed from the equation

∑

r ′ crr ′ {qr ′,qs} = δr,s . A
quantum theory is obtained by replacing the Poisson bracket
by the commutators {, } = ih̄[, ].

We will present results for electronic systems with second-
class constraints. Our calculations allow us to propose that for
the second-class fermionic constraints a modified Heisenberg
equation of motion should be used. Given two fermionic
constraints Q, Q+ which obey non-zero anti-commutation
relations [Q, Q+]+ ≡ QQ+ + Q+ Q �= 0 we find that the
Dirac bracket is modified. The new Heisenberg equation of
motion for a fermionic operator ̂OF and a Hamiltonian H is
given by

ih̄
d̂OF

dt
= [

̂OF, H
]

D

where
[

̂OF, H
]

D
= [

̂OF, H
]− [

̂OF, Q
]

+
(

[

Q, Q+]
+
)−1 [

Q+, H
]

− [

̂OF, Q+]
+
(

[

Q+, Q
]

+
)−1

[Q, H ] .

In the first part we present the derivation of this new result.
Each ring obeys periodic boundary conditions. For each

ring, the point x is identified with the point x + L. The two
coupled rings with the character ‘8’ structure (i.e. g = 2) are
obtained by identifying the middle point x = L/2 of the first
ring with point x = 0 of the second ring, i.e. C1(L/2) = C2(0)
and C+

1 (L/2) = C+
2 (0). The operators C1(L/2) and C+

1 (L/2)
represent the electronic annihilation and creation operators for
the first ring at the point x = L/2. For the second ring
at the point x = 0 we introduce the electronic operators
C2(0) and C+

2 (0). This identification is equivalent to two
fermionic constraints, Q ≡ C1(L/2) − C2(0) and Q+ ≡
C+

1 (L/2) − C+
2 (0) which are enforced by anti-commuting

Lagrange multipliers, μ+ and μ. Following [18] we replace
the Hamiltonian H for the two uncoupled rings by a new
Hamiltonian HT given by

HT = H + μ+Q + Q+μ.

The constraint conditions are implemented with the help
of the anti-commuting Lagrange multipliers μ and μ+. The
unusual physical meaning of the anti-commuting Lagrange
multipliers can be viewed as a fermionic impurity [18] which
mediates the hopping of the electrons between the two rings.

The wavefunction for the genus g = 2 problem is given
by the eigenstate |χ〉 of the Hamiltonian for the two rings with
the additional conditions

Q|χ〉 = 0 and Q+|χ〉 = 0.

The Hamiltonian HT is used to determine the Lagrange
multipliers which are determined by the condition that the
constraints must be satisfied at any time. Therefore the time
derivative of constraints must be zero at any time

Q̇|χ〉 = Q̇+|χ〉 = 0.

We introduce the notations [A, B]+ ≡ AB + B A and
[A, B] = AB − B A.

The Heisenberg equation of motion for the constraint
Q is

ih̄ Q̇ = [Q, HT ] = [Q, H ] + [Q, μ+ Q + Q+μ]
= [Q, H ] + [Q, μ+]+Q − μ+[Q, Q]+ + [Q, Q+]+μ

− Q+[Q, μ]+ = [Q, H ] + [Q, Q+]+μ. (1)

The anti-commuting Lagrange multipliers satisfy the equa-
tions; [Q, μ+]+ = [Q, μ]+ = [Q+, μ+]+ = [Q+, μ]+ = 0.
The constraints are fermionic and obey

[Q, Q+]+ = [Q+, Q]+ = 2.

This result shows that the constraints are second-class
constraints [18]. From the condition Q̇|χ〉 = 0 and
equation (1) we determine the Lagrange multiplier field μ:

μ = −[Q+, Q]−1
+ [Q, H ] = − 1

2 [Q, H ].

The field μ+ is obtained from the equation Q̇+|χ〉 = 0:

μ+ = [Q, Q+]−1
+ [Q+, H ] = 1

2 [Q+, H ].

The Hamiltonian HT with the constraints and the La-
grange multipliers are used to compute the Heisenberg equa-
tion of motion for any fermionic operator Ô (the La-
grange multipliers anti-commute with any fermionic operator,
i.e. [Ô, μ]+ = [Ô, μ+]+ = 0):

ih̄
dÔ

dt
= [Ô, HT ] = [Ô, H ] + [Ô, μ+ Q] + [Ô, Q+]μ

= [Ô, H ] + [Ô, μ+]+Q − μ+[Ô, Q]+
+ [Ô, Q+]+μ− Q+[Ô, μ]+

= [Ô, H ] − [Ô, Q]+μ+ − [Ô, Q+]μ. (2)

We substitute in equation (2) the solutions for the Lagrange
multiplier fields and obtain a new equation of motion
with a new commutator which resemble the classical Dirac
brackets [18]:

ih̄
dÔ

dt
= [Ô, HT ] = [Ô, H ] − [Ô, Q+]+([Q+, Q]+)−1

× [Q, H ] − [Ô, Q]+([Q, Q+]+)−1[Q+, H ]
≡ [Ô, H ]D. (3)

Equation (3) shows that the Heisenberg equation of
motion for the fermionic operator is governed by a
new commutator [Ô, H ]D. The equations Q|χ〉 = 0 and
Q+|χ〉 = 0 are inconsistent with [Q, Q+]+|χ〉 �= 0 since the
anti-commutator of the constraints is non-zero. The new anti-
commutator [Q, Q+]+,D resolves the inconsistency problem

[Q, Q+]+,D|χ〉 ≡ [Q, Q+]+|χ〉 − [Q, Q+]+([Q+, Q]+)−1

× [Q, Q+]+|χ〉 − [Q, Q]+([Q, Q+]+)−1

× [Q+, Q+]+|χ〉 = 0.

This result can be generalized for any operator X which is
either bosonic or fermionic in the presence of any two second-
class constraints Q and Q+.

3
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We introduce a compact notation for the commutator or
the anti-commutator:

[A, B]ε(AB) ≡ AB − (−1)n(A)n(B)B A

where n(A) = 0 and n(B) = 0 for bosons

and n(A) = 1 and n(B) = 1 for fermions.

In this new notation the constraint field commutator or
anti-commutator obey [Q, Q+]ε(QQ+) �= 0.

As a result the Heisenberg equation of motion for the
operator X will be replaced by

ih̄
dX

dt
= [X, HT ]ε(D)

where the generalized Dirac commutator takes the form

[X, HT ]ε(D) ≡ [X, H ] − [X, Q+]ε(X Q+)([Q+, Q]ε(Q+ Q))
−1

× [Q, H ] − [X, Q]ε(X Q)([Q, Q+]ε(QQ+))
−1[Q+, H ].

For the remaining part we will confine ourself to the
fermionic case given in equation (3). We will compute
the Heisenberg equations of motion for the creation and
annihilation fermionic operators Cα(x, t) and C+

α (x, t) α =
1, 2 which obey periodic boundary conditions Cα(x) =
Cα(x + L) and C+

α (x) = C+
α (x + L) and α = 1, 2 is the

index of the rings. For H we can use any Hamiltonian for the
two uncoupled rings:

ih̄Ċα(x) = [Cα(x), H ]D = [Cα(x), H ]
− 1

2 [Cα(x), Q+]+[Q, H ].
The effects of the finite width of the rings is taken into

consideration in the following way. For this situation we
will introduce the y coordinate in the transversal direction.
The constraints Q and Q+ are given in terms of the single
particle operator Cα(x, y),C+

α (x, y) which is a function of
the coordinate x along the ring and y is the coordinate in the
transversal direction. The modified constraints are a function
of the coordinate y:

Q(y) = Cα=1(x = 0, y)− Cα=2(x = L/2, y) and

Q+(y) = C+
α=1(x = 0, y)− C+

α=2(x = L/2, y).

3. An application to persistent currents—exact
solution for two rings in the presence of an external
magnetic flux

We consider two rings of length L which are threaded by a
magnetic flux �α, where α = 1, 2 (for each ring). In order to
observe the changes of the constraints in the presence of the
external flux, we perform the following steps. In the absence
of the external flux �α = 1, 2 the Hamiltonian for the two
rings is given by H0 = −t

∑2
α=1

∑(Ns−1)a
x=0 [C+

α (x)Cα(x +
a) + h.c.]. The length of each ring is L = Nsa, where Ns

is the number of sites and a is the lattice spacing. When
the external magnetic flux �α is applied the Hamiltonian H0

is replaced by H . The Hamiltonian H is obtained by the
transformation Cα(x) → exp[i e

h̄c

∫ x
0 A(x ′; α) dx ′]Cα(x) ≡

ψα(x) and C+
α (x) → C+

α (x) exp[−i e
h̄c

∫ x
0 A(x ′; α) dx ′] ≡

ψ+
α (x). Here A(x; α) is the tangential component of the vector

potential on each ring. The relation between the flux and the
vector potential on each ring is e

h̄c

∫ L
0 A(x; α) dx = ϕα .

The flux �α on each ring α = 1, 2 gives rise to
a change in the boundary conditions, ψα(x + Nsa) =
ψα(x)eiϕα and ψ+

α (x + Nsa) = ψ+
α (x)e

−iϕα , where ϕα =
2π( e�α

hc ) = 2π �α
�0

≡ 2πϕ̂α . This boundary condition
gives rise to a normal mode expression for each ring,
ψα(x) = 1√

N

∑Ns−1
n=0 eiK (n,ϕα)·xψα(n) and a similar expression

forψ+
α (x). The ‘momentum’ K (n, ϕα) is given by K (n, ϕα) =

2π
Nsa
(n + ϕ̂α) where n = 0, 1, . . . , N − 1 are integers with

N = Ns and ϕα = 2πϕ̂α. In the momentum space the
fermionic operators ψα(n) and ψ+

β (m) obey anti-commutation
relations [ψα(n), ψ+

β (m)]+ = δα,βδn,m . The Hamiltonian
for the two rings in the presence of the external flux takes
the form

H = −t
∑

α=1,2

(Ns−1)a
∑

x=0

ψ+
α (x)ψα(x + a)+ h.c.

=
∑

α=1,2

Ns−1
∑

n=0

ε(n, ϕ̂α)ψ
+
α (n)ψα(n) (4)

where ε(n, ϕα) = −2t cos[ 2π
N (n + ϕ̂α)] are the eigen-

values for each ring. The Hamiltonian in equation (4)
has to be solved together with the transformed con-

straints Q = ψ1(
L
2 )e

−i e
h̄c

∫
L
2

0 A(x;α=1)dx − ψ2(0) and Q+ =
ψ+

1 (
L
2 )e

i e
h̄c

∫
L
2

0 A(x;α=1)dx − ψ+
2 (0).

The wavefunction for the genus g = 2 problem is given by
the eigenstate |χ〉 of the Hamiltonian in equation (4), which in
addition satisfies the equations Q|χ〉 = 0 and Q+|χ〉 = 0. The
analysis given in section 2 shows that the equation of motion
is governed by equation (3). We find for the creation ψ+

α (x, t)
and annihilation ψα(x, t) operators the following Heisenberg
equations of motion:

ih̄ψ̇α(x) = [ψα(x), H ]D = [ψα(x), H ]
− 1

2 [ψα(x), Q+]+[Q, H ]
= − t[ψα(x + a)+ ψα(x − a)]

− 1
2 [δα,1δx,L/2eiϕ1 − δα,2δx,0]

× (−t)

{

e−iϕ1

[

ψ1

(

L

2
+ a

)

+ ψ1

(

L

2
− a

)]

+ e−iϕ2

[

ψ2

(

L

2
+ a

)

+ ψ2

(

L

2
− a

)]}

. (5)

The ground state wavefunction is obtained from the
one-electron state |χ〉 = ∑

α=1,2

∑(Ns−1)a
x=0 Zα(x)ψ+

α (x)|0〉
given in terms of the site amplitudes Zα(x). Using a
normal mode momentum expansion fα(n) i.e. Zα(x) =

1√
N

∑N−1
n=0 eiK (n,ϕ̂α)x fα(n) we find the following equations for

the eigenvalues λ and the amplitudes in the momentum space
fα(n):

(λ− ε(+ ϕ̂1)) f1() = −eiπ

2N

N−1
∑

n=0

ε(n + ϕ̂1)e
iπn f1(n)

− 1

2N

N−1
∑

n=0

ε(n + ϕ̂2) f2(n) (6)

4
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and

(λ− ε(+ ϕ̂2)) f2() = 1

2N

N−1
∑

n=0

ε(n + ϕ̂2) f2(n)

+ eiπ

2N

N−1
∑

n=0

ε(n + ϕ̂1)e
iπn f1(n). (7)

We diagonalize equations (6) and (7) by the linear
transformations S1(ϕ̂1, λ) = −∑N−1

=0 ε( + ϕ̂1)eiπ f1() and
S2(ϕ̂2, λ) = −∑N−1

=0 ε( + ϕ̂2) f2(). As a result we obtain

the eigenvalue equation M(
S1

S2

) = 0

where the matrix M is given by

M =
(−(1 +�

(+)
1 ) �

(−)
1

�
(−)
2 1 −�

(+)
2

)

.

Here we define �(+)
α (ϕ̂α, λ) ≡ �(even)

α (ϕ̂α, λ) +
�(odd)
α (ϕ̂α, λ) and�(−)

α (ϕ̂α, λ) ≡ �(even)
α (ϕ̂α, λ)−�(odd)

α (ϕ̂α, λ)

with the even and odd representations given by�(even)
α (ϕ̂α, λ) =

1
2N

∑(N−2)/2
m=0

ε(2m+ϕ̂α)
λ−ε(2m+ϕ̂α ) and �(odd)

α (ϕ̂α, λ) = 1
2N

∑(N−2)/2
m=0

ε(2m+1+ϕ̂α )
λ−ε(2m+1+ϕ̂α ) . We compute det M = 0 and obtain the
characteristic polynomial which is used to determine the
eigenvalues λ:

2
[

�
(even)
1 (ϕ̂1, λ)�

(odd)
2 (ϕ̂2, λ)+�

(odd)
1 (ϕ̂1, λ)�

(even)
2 (ϕ̂2, λ)

]

+
[

�
(+)
1 (ϕ̂1, λ)−�

(+)
2 (ϕ̂2, λ)

]

= 1. (8)

Equation (8) is our main result for the genus g = 2 case. The
matrix M is Hermitian and the eigenvalues are real. For the
particular case where the fluxes are equal, i.e. ϕ̂1 = ϕ̂2, or
opposite, i.e. ϕ̂1 = −ϕ̂2, it is easy to see that the matrix M is
symmetric.

4. Numerical analysis

We have numerically solved the secular equation (8) where
Ns represents the number of sites and a is the lattice
constant. To compute the current, we sum over the
current carried by each eigenvalue λ(ϕ̂1, ϕ̂2) using the
grand-canonical ensemble with a fixed chemical potential.
In the absence of disorder the difference between a
canonical ensemble calculation and a grand-canonical one is
insignificant. The current in each ring α = 1, 2 is given by
I (g=2)
α (ϕ̂1, ϕ̂2) = −∑

λ(ϕ̂1,ϕ̂2)
d

dϕ̂α
[λ(ϕ̂1, ϕ̂2)]F( (λ(ϕ̂1,ϕ̂2)−EF)

KBT )

where F( (λ(ϕ̂1,ϕ̂2)−EF)

KBT ) is the Fermi Dirac function with the
chemical potential EF and temperature T . The current is
sensitive to the number of electrons being either even or odd.
We use the grand-canonical ensemble and limit ourselves to
a situation with even numbers of sites and a zero chemical
potential, i.e. EF = 0 (which corresponds to the half-filled
case). In order to have a perfect particle–hole symmetry, we
will restrict the analysis to the special series for the number
of sites being Ns = 2, 6, 10, 14, 18, . . . , 2m + 2, where m =
0, 1, 2, 3 . . .. For this case, we find that, when the fluxes are
the same in both rings, the current for g = 2 has the same
periodicity as that of a single ring, i.e. I (g=2)(� + �0) =
I (g=2)(�). At temperatures T � 0.02 K, the lineshape of

the current as a function of the flux is of a sawtooth form (see
figure 1(b)). For other series Ns �= 2m + 2, the periodicity
of the current is complicated. Using the experimental values
given in the experiment [17], we estimate that the number of
sites in our model should be in the range of Ns ≈ 230, the
hopping constant should be t = h̄vF

2a sin(KFa) ≈ 0.01 eV and the
temperature in the experiment should be T = 0.02 K. Using
these units, we find that the persistent current is given in terms
of a dimensionless current I (see figures 1(b) and (c)) with the
actual current value I (g=2) = I × 0.92 × 10−4 A.

4.1. Equal fluxes for g = 2

For this case the secular equation is simplified and takes the
form of 4[�(even)(ϕ̂, λ)�(odd)(ϕ̂, λ)] = 1.

For Ns = 2 we solve analytically the secular equation.
We find that the eigenvalues are given by λ(n, ϕ; N =
2) = r(N = 2)ε(n, ϕ; N = 2) where ε(n, ϕ, N =
2) = −2t cos[ 2π

N=2 (n + ϕ̂)] and n = 0, 1 are the single-
ring eigenvalues. The value for r(N = 2) is r(N =
2) =

√
3

2 . To find the eigenvalues for other numbers of sites
Ns = 6, 10, 14, 18, 22, 26, 30, we numerically find the relation
λ(n, ϕ; N) = r(N)ε(n, ϕ; N) where n = 0, 1, . . . , N − 1
and ε(n, ϕ; N) = −2t cos[ 2π

N (n + ϕ̂)] are the single-ring
eigenvalues.

The function r(N) is given in figure 1(a). This
figure shows that the function r(N) reaches one for
large N . Using the function r(N) given in fig-
ure 1(a) we compute the current for the g = 2
case as a function of temperature, I (g=2)(ϕ; N; T ) =
−∑n=N−1

n=0
d

dϕ [r(N)ε(n, ϕ; N)]F( r(N)ε(n,ϕ;N)−EF)

KBT ).
Figure 1(b) represents the current for Ns = 30 sites at

two temperatures T = 0.02 and T = 20 K. In this figure the
current is given in dimensionless units I plotted as a function of
the dimensionless flux f ≡ ϕ̂α = [−0.5, 0.5] (ϕα = 2πϕ̂α =
[−π, π]). The solid line represents the single-ring current and
the dashed line represents the current for the genus g = 2
case. In figure 1(b) the ratio of the currents at T = 0.02 K
is r(N = 30, T = 0.02) = 0.979.

Figure 1(c) shows that the currents at T = 20 K are in
the range of 7 nA and the reduction of the current is larger in
comparison with the T = 0.02 K case given in figure 1(b).

4.2. Two coupled rings with opposite fluxes, i.e. ϕ̂1 = −ϕ̂2

For Ns = 2, the eigenvalues are the same as the one obtained
for the same flux case. For Ns = 6, 10, 14, . . . , 2m +
2 we solve the secular equation given in equation (8)
and compute the eigenvalues. In figure 2(a) we plot
the total energy as a function of the opposite fluxes at
T = 0.02 K for 30 sites E (g=2)(−ϕ̂, ϕ̂, Ns = 30, T =
0.02, K ) = ∑n=N−1

n=0 [λ(−ϕ̂, ϕ̂)F( (λ(−ϕ̂,ϕ̂)−EF)

KBT )]. The total
energy dependence on the opposite flux is chaotic due to the
interference between paths which encircle a zero and a non-
zero flux for the two rings. In addition we observe periodic
oscillation with the fundamental period �0 (see figures 2(a)
and (b)). For comparison we show in figure 2(b) the total
energy for equal fluxes which is parabolic and the current is
linear (for small fluxes).
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Figure 1. (a) The ratio of the double-to single-ring currents I (g = 2; N)/I (g = 1; N) = r(N); (b) the single-ring (solid line) and the
double-ring (dashed line) currents for Ns = 30 at T = 0.02 K; and (c) the single-ring (solid line) and the double-ring (dashed line) currents
for Ns = 30 at T = 20.0 K.
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Figure 2. (a) The total energy for opposite fluxes, φ = ϕ̂1 = −ϕ̂2 for
30 sites at T = 0.02 K E (g=2)(−φ, φ; Ns = 30, T = 0.02 K); and
(b) the total energy for equal fluxes, φ = ϕ̂1 = ϕ̂2 E (g=2)(φ, φ;
Ns = 30, T = 0.02 K).

The effect of a finite width in the ballistic regime will
give rise to a multichannel persistent current which can be
analyzed using the discussions for the multichannel case which
will be presented in the next section. The energy will be given
by a sum of energies with respect to the different channels.
Therefore we expect that the multichannel effect will give
rise to a smooth function of the energy as a function of the
opposite fluxes.

5. Discussions

5.1. A possible experimental confirmation of our results

At this stage it is not clear if a genus g = 2 experiment exists
in the ballistic regime where our theory can be applied. The
closest experiment which might be relevant to our theory is
the experiment presented in [17]. The author of [17] make
the statement (see the last sentence in their paper) that from
the theoretical side a model for the ballistic regime is needed
for a direct comparison with the experiment. They make
this statement based on their results which indicate that the
ratio between the single-ring current and the current in 16
coupled rings is close to one! The authors of [17] claim
that the conditions in their experiment are not in a clear
diffusive region. Therefore we believe that the ballistic theory
presented can explain most of the experimental results. A

full comparison with the experiment demands to estimate the
effects of dephasing controlled by the dephasing time τφ and
elastic scattering time τe. In the ballistic regime with a few
impurities we can consider a model of a single 2KF impurity
scattering. For the opposite situation the effect of the many
impurities requires us to perform an ensemble average over
disorder. In this case it is not possible to work with a fixed
chemical potential; instead we have to vary the chemical
potential with the variation of the external flux in order to keep
the number of particles fixed.

The effects of dephasing and disorder fluctuations are
outside the scope of this paper. Therefore the comparison with
the experimental results might be incomplete.

The experiment presented in [17] is based on a system
of 16 GaAs/GaAlAs coupled rings. At this stage we have
only results for two rings: we find that for two rings the ratio
between the amplitudes of the currents are I (g=2)/Isingle−ring =
0.987. Since the experiment was performed on 16 rings we
use a scaling argument in order to extrapolate the results to
16 rings. For two rings plus a scaling argument we obtain
r = I16−rings/Isingle−ring ≈ [I (g=2)/Isingle−ring]4 = [r(T =
0.02, Ns = 50)]4 = [0.987]4 = 0.95. The value r = 0.95 is in
the range of the experimental observation reported in [17]. In
the experiment the rings are connected through arms of length
of the order of the wavelength which can be approximated by
point contact between the rings.

Next we will evaluate the amplitude of the currents. At
low temperature and large number of sites the ratio of the
amplitudes for the single and double ring is close to one!
In order to estimate the amplitude we can consider only the
amplitude for a single ring.

Using the experimental values for the Fermi velocity vF =
3.16 × 105 m s−1, Fermi wavelength λF = 3.5 × 10−8 m
and the ring perimeter L = 1.2 × 10−5 m we compute the
persistent current amplitude for a single ring. Using a model of
a single conducting channel we find that the amplitude current
at T = 0 is given by evF

L = 4.2 nA instead of 0.4 nA reported
by the experiment in [17]. Using the velocity and Fermi
wavelength we obtain the effective hopping constant used in
our simulations t = h̄vF

2a sin(KFa) with KF = 2π
λF

and an effective
lattice constant a = λF/4. This gives that the effective length
used in the simulation for 30 sites was Lsimulation = 30 ·λF/4 =
2.6 × 10−7 m. Our simulation shows that the current for 30
sites at T = 0.04 K was I = 10−3 in dimensionless units
which corresponds to a current I → I · 0.92 × 10−4 A. Using
the value of the hopping constant t = 1.9 J = 0.012 eV we find
for Ns = 30 a current I (Ns = 30) = e

h̄
2t
Ns

= 2.8
Ns=30 × 10−6 =

92 nA.
In figure 3 we show the current dependence on the length

of the ring for single and double rings at different temperatures.
At T = 0.02 K the current decreases linearly with length.
This allows us to use at T = 0 a linear relation between the
currents for different ring sizes. We find I (Lsimulation )

I (L) = L
Lsimulation

.
Therefore the current obtained in the simulation I (Lsimulation =
2.6 × 10−7 m) = 92 nA will correspond to a current for the
rings with the length L = 1.2 × 10−5 m which is I (L =
1.2 × 10−5 m) = 4.2 nA. This means that the current of 92 nA
obtained in the simulation corresponds to a current of 4.2 nA

7
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Figure 3. The current derivative with respect to the flux at φ 
 1
multiplied by the number of sites N as a function of N at different
temperatures for a single and a double ring.

(This figure is in colour only in the electronic version)

in the rings. The value observed in the experiment was 0.4 nA
which is a factor of 10 smaller than the prediction for a single
channel and no impurities.

5.2. The effect of disorder and interactions in a multichannel
model can give the correct value of the persistent current in
agreement with the experiment in [17]

We explain the discrepancy of a factor of 10 between the
experimental result and the theoretical calculation using a
single 2KF impurity model. The impurity gives rise to 2KF

scattering for a multichannel one-dimensional ring at zero
temperature. We consider a situation of independent one-
dimensional channels. This approximation is valid for a dilute
impurity scattering with a large elastic scattering time τe and a
large dephasing time τφ which obeys τφ > τe. In addition we
demand that the level spacing � satisfies � > h̄

τφ
.

Contrary to the transport current the persistent current is
without dissipation. The persistent current is determined by the
time derivative of the zero mode coordinate (the macroscopic
phase of the wavefunction). In [19] (Schmeltzer and Berkovits)
it was shown that the effect of a 2KF impurity scattering in a
Luttinger liquid gives rise to an enhancement of the kinetic
mass and, as a result, the persistent current is suppressed.
Using the results given in figure 1 ([19] Schmeltzer and
Berkovits) we find that the suppression factor for one channel
was 1 − bW 2, where b is determined by the strength of
the electron–electron interactions and W is the 2KF impurity
scattering potential. The value of b for weak electron–electron
interactions extracted from [19] was b = 38.29. The value
of W can be obtained from the elastic transport mean free
path le. From the conductivity measurements one finds le =
8×−6 m. Using the Boltzmann equation we will extract from
the transport time the scattering potential W :

vF

le
= 2π

h̄

t2

EF

(

W

t

)2

〈(1 − cos(θ))〉.

The angular average 〈(1 − cos(θ))〉 is determined by the
ratio between the width and length of the ring. We have
〈1 − cos(θ)〉 = ∫ θ0

−θ0
(1 − cos(θ)) dθ

2π + ∫ π+θ0

π−θ0
(1 − cos(θ)) dθ

2π

with θ0 = d
Leff

where d = 10−6 m is the width of the ring

(which is actually a square with the length Leff = L
4 ). Solving

this equation we find that the scattering potential is given by
W
t = ( λF

le
d
L
π
32 )

1/2 = 0.16.
Using the result given in [19] (Schmeltzer and Berkovits)

we compute the persistent current for a single ring (with one
channel) in the presence of the 2KF potential W

t = 0.16.
We find evF

L (1 − bW 2) = 4.2 nA · (1 − 38.26 ·
(0.16)2) = 0.09 nA which is smaller than the current
observed in the experiment of 0.4 nA. This discrepancy
suggest that the finite width of the rings gives rise to
a multichannel persistent current. For a single ring the
wavefunction is given by �(x, y) = ∑nmax

n=1 ψn(x)χn(y)
where χn(y) = ( 2

d )
1/2 sin(n πd y) is the standing wave in

the transversal direction of the ring 0 � y � d . In the
absence of disorder the problem is replaced by n independent
one-dimensional channels with a shifted energy h̄2

2m (n
π
d )

2 and
operators ψn(x), ψ†

n (x). As a result in the absence of disorder
the current will be given by

I = evF

L

nmax
∑

n=1

(

1 −
(

n
π

d

λF

2π

)2
)1/2

.

The effect of the 2KF impurity scattering enhances the
mass for different channels. This enhancement is a function
of the Fermi velocity for each channel. Therefore the current
will be replaced by

I = evF

L

nmax
∑

n=1

(

1 −
(

n
π

d

λF

2π

)2
)1/2

×
⎡

⎣1 − bW 2

(

1 −
(

n
π

d

λF

2π

)2
)−1

⎤

⎦ .

We have replaced b by b(1 − (n πd
λF
2π )

2)−1 in agreement
with [19] where it was shown that b is a function of the
Fermi velocity for each channel. Using the extracted values
of b = 38.26 and W = 0.16 we find from the condition
[1 − bW 2(1 − (n πd

λF
2π )

2)−1] � 0 that the maximum number
of conducting channels is given by nmax = 8. Substituting
the value of nmax = 8 in the last current equation allows us to
compute the current. We find that the persistent current is given
by I = 0.4 nA which is in agreement with the experiment
in [17].

5.3. The constraints for two rings with a finite width

For this case we have to do the gluing for two rings with a
width d . The transversal direction is y and x is the direction for
the one-dimensional channel. The constraints used previously
are modified in the following way: Q(x = 0, y = d + ε) =
C1(L/2, y = d + ε ′) − C2(0, y = d + ε ′′) and Q+(0, y =
d + ε) = C+

1 (L/2, y = d + ε ′)− C+
2 (0, y = d + ε ′′), where

ε ′ + ε ′′ = larm and larm = d represents the length of the arm
which connects the two rings. As a result the common part
between the rings will be given by the connecting arm larm = d .

The second-class constraints is given by

[Q(x ≈ 0, y = d + ε ′), Q+(x ′ ≈ 0, y = d + ε ′′)]+
= 2δ(ε ′ + ε ′′ − larm).

8



J. Phys.: Condens. Matter 20 (2008) 335205 D Schmeltzer

Using the second-class constraint we obtain the equation
of motion for the two-rings spinor Cα=1,2(x, y):

ih̄
dCα(x, y)

dt
= [Cα(x, y), HT ]D = [Cα(x, y), H ]

−
∫

dz
∫

dz′[Cα(x, y), Q+(0, y = d + z]+
× ([Q+(0, y = d + z), Q(0, y = d + z′]+)−1

× [Q(0, y = d/2 + z′), H ]
−
∫

dz
∫

dz′[Cα(x, y), Q(0, y = d + z]+
× ([Q(0, y = d + z), Q+(0, y = d + z′)]+)−1

× [Q+(0, y = d + z′), H ].
In the absence of disorder we can simplify the expression

for the constraints if we introduce a contact point y = d0

chosen such that d < d0 < larm. As a result we obtain
a constraint for each channel, Qn(x = 0) and Qm(x =
0). We have the conditions for the second-class constraints,
[Qn, Q+

m]+ = 2δ(n,m). As a result the current for two rings
will be similar to the one-dimensional case. The difference
between the current for different channels in two rings will be
determined by the transversal shift potential energy, h̄2

2m (n
π
d )

2.
We have repeated our simulation for different transversal
potentials with n < nmax = 8 (the number of propagating zero
modes) and find that the ratio between the double and single
rings remains one.

5.4. Generalization to many coupled rings

In order be able to study a system of many coupled rings we
have to find a method which can be applied to many coupled
rings. It seems that it might be preferable to replace the
constraint of the single-particle operator with the constraints
defined in terms of the electronic densities and currents.
This method can be combined with the basic technique of
matching the boundary conditions used for solving quantum
wire problems.

At the common point of the two rings at x = 0 the
constraint gives rise to equal densities, ρ1(x = 0) = ρ2(x =
0). Formally this condition is enforced with the help of
the scalar field a0δ(x) which plays the role of a Lagrange
multiplier. For g coupled rings we introduce a set of scalar
potentials a(0,1)0 . . . a(g−2,g−1)

0 for which a statistical annealed
average has to be performed.

The Hamiltonian for g coupled rings with ρn(x) electronic
density and ϕ1.....ϕg fluxes is:

H (g) = H
(

ϕ1 . . . ϕg
)+

g−2
∑

n=0

a(n,n+1)
0

(

ρn (x − (n + 1) L)

− ρn+1 (x − nL)
)

.

This formulation allows us to use standard field
theory methods such as bosonization and renormalization
group [19, 20]. Using the bosonization method we replace
the fermion field in each ring by a bosonic field. As a result
the first term in the Hamiltonian H (ϕ1 · · ·ϕg) is replaced
by g sound wave Hamiltonians. The effect of the scalar

potentials a(0,1)0 . . . a(g−2,g−1)
0 is viewed as g impurities in a

one-dimensional wire which are described by g sine-Gordon
terms which models the contact between two connected rings.
Using such a formulation the persistent current is computed.

5.5. The capacitor model EC = (ρ1(x=0)−ρ2(x=0))2

2C0
for coupled

rings—a wavefunction amplitude calculation based on
matching the boundary conditions

It will be interesting to see if an alternative solution not
based on constraints can be found for the wavefunction.
Such a formulation will allow the use of the matching
boundary condition method. We will demonstrate that such a
modeling leads to a non-universal description based on explicit
microscopic parameters. On the other hand we will show
that the physical constraints on the two rings gives rise to an
universal formulation of the problem. This suggest that a direct
solution based on just matching the boundary conditions is not
possible.

For simplicity we will consider a continuum formulation
for the two rings. We propose the following physical
model. The contact between the two rings is described by a
capacitor C0. At the contact point the capacitive energy of
the system will be EC = (ρ1(x=0)−ρ2(x=0))2

2C0
where C0 is the

capacitor of the dot and ρ1(x = 0) − ρ2(x = 0) is the charge
difference between the rings. The Hamiltonian for the two
rings in the presence of the capacitor at the contact point is
given by

HC = H + 1

2C0
[C+

1 (x = 0)C1(x = 0)

− C+
2 (x = 0)C2(x = 0)]2.

The wavefunction for this problem can be computed using
the method of matching boundary conditions. Due to the fact
that the energy depends on the explicit value of the capacitance
C0 the solution for the wavefunction will not be universal.

In order to clarify this point we will describe the point
contact as a constraint problem. At the point contact the
electronic density operator ρ1(x = 0) on ring one is equal to
the density operator ρ2(x = 0) on the second ring. Instead of
using the Dirac method we can enforce the constraint by using
Lagrange multipliers. The constraint is enforced by a Lagrange
multiplier a0 which act as a point contact potential for the two
rings. As a result we obtain a problem of two rings with a delta
function potential at the contact point x = 0 (we have used
a symmetric description for the two rings). The Hamiltonian
with the Lagrange multipliers is given by

H0 = H + a0[C+
1 (x = 0)C1(x = 0)

−(C+
2 (x = 0)C2(x = 0))].

The equivalence between the two formulations, the
exact one given by the Lagrange field a0 and the capacitor
Hamiltonian EC = (ρ1(x=0)−ρ2(x=0))2

2C0
, is achieved only in the

limit C0 → 0. Alternatively, using the Hubbard–Stratonovich
decoupling for EC = (ρ1(x=0)−ρ2(x=0))2

2C0
allows us to introduce

the field a0 which acts as a potential for the two rings
a0[C+

1 (x = 0)C1(x = 0)− (C+
2 (x = 0)C2(x = 0))] with the

value of the potential controlled by the capacitor. This shows

9
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that qualitatively H0 and HC are similar. The major difference
between the two is that in the exact constraint formulation the
physical result does not depend on a particular value of the
capacitor C0. Instead we have to average over all the potentials
a0. Therefore the capacitor model is incomplete if the limit
C0 → 0 is not taken.

Due to the difficulty in taking the strong coupling limit
1

C0
→ ∞ we will work with the Lagrange multiplier

formulation. We will investigate the Hamiltonian H0 in the
presence of the potential a0 and compute the wavefunction.
The wavefunction is given by |�s(t)〉. The physical evolution
operator Uphys(t) allows us to compute the wavefunction at a
time t, |�s(t)〉 = Uphys(t)|�s(t = 0)〉. The physical operator

Uphys(t) = e
−i
h̄ H0t lim�→∞

∫ �

−�
da0(x=0)

2� exp(−i
h̄ a0(x =

0)ρ(x = 0)) is controlled by the constraint which
is implemented by a time-independent integration of the
Lagrange multiplier a0(x = 0).

This shows that the physical result is given by the
evolution operator Uphys(t). This means that we have to
compute the current for all possible values of the point contact
potential and in addition we have to perform an annealed
average over all the point contact potentials.

The advantage of the Uphys(t) operator is that it maps
the problem of coupled ring into an impurity potential (with
varying strength) for which the method of matching boundary
conditions can be used.

Explicitly the solution of the problem in a symmetric
configuration with the common point at x = 0 is solved in the
following way. We fold the space of the first ring from [−L, 0]
to [L, 0] such that the space of the two rings is restricted to
0 � x � L. The wavefunction for the coupled rings Z E (x)
with eigenvalue E is given as a spinor with two components
Zα(x), where α = 1, 2 is the index for the two rings. The
Schrödinger equation for the two rings in the presence of the
point contact potential a0δ(x) is

[

−
(

−∂x − i
2π

L
ϕ1

)2

+ a0δ (x)

]

Z1 (x) = K 2 Z1 (x)

[

−
(

∂x − i
2π

L
ϕ2

)2

− a0δ (x)

]

Z2 (x) = K 2 Z2 (x)

where K 2 ≡ 2m
h̄2 E with the energy E . Using these equations

we can compute the current for the two rings in the presence
of the point contact potential. The current is a function of the
strength of the point contact potential a0 and the two fluxes
ϕ1, ϕ2 given by I [ϕ1, ϕ2; a0]. The physical current is obtained
after averaging over all possible values of the point contact
potentials a0, Ī (ϕ1, ϕ2) = lim�→∞

∫ �

−�
da0
2� I (ϕ1, ϕ2; a0).

The eigenfunctions for this problem are obtained by
matching the boundary conditions:

(a) The continuity condition:

Z1 (x) = Z1 (x + L) and

Z2 (x) = Z2 (x + L)

(b) The discontinuity of the derivative at x = 0 for each ring:
(

−∂x − i
2π

L
ϕ1

)

Z1 (x = −ε)

−
(

−∂x − i
2π

L
ϕ1

)

Z1 (x = ε) = a0 Z1 (x = 0)

(

∂x − i
2π

L
ϕ2

)

Z2 (x = −ε)

−
(

−∂x − i
2π

L
ϕ2

)

Z2 (x = ε) = −a0 Z2 (x = 0) .

(The change of sign of the flux in ring one α = 1 is a result
of folding the space from [−L, 0] to [L, 0].) The solution
for the wavefunction Z E (x) for equal fluxes is given by

Z E (x) = 1
√

2
(

1 + |R|2)
{

δα,1
[

e−iK x − eiK x R(−K , ϕ)
]

+ δα,2
[

e−iK x − eiK x R∗ (−K , ϕ)
]}

.

From the two boundary conditions we determine the
function R(K , ϕ) = 1−e−i(K L+2πϕ)

1−ei(K L−2πϕ) . This function depends on
the flux ϕ and the eigenvalue K .The eigenvalue K is K =
2π
L n + 2π

L δ(
a0
2K , ϕ) where n = 0,±1 . . . and the phase shift

δ( a0
2K , ϕ). The solution of the phase shift is determined by the

flux ϕ and the ratio a0
2K .

The explicit solution of the phase shift δ is given by the
following trigonometric equation:

cos
[

2πδ − arctan
( a0

2K

)]

= cos[ϕ] cos
[

arctan
( a0

2K

)]

.

The value of the phase shift allows us to compute the
current I [ϕ; a0] for a fixed value of the potential a0. Therefore
this will not be a universal result.

The physical current will be obtained after the averaging
over all the potentials a0 is performed:

Ī (ϕ) = lim
�→∞

∫ �

−�
da0

2�
I (ϕ; a0) .

The need for the additional average makes the solution for
the persistent current more involved and practically difficult.
This shows that no simple method based only on matching the
boundary condition can be found! Comparing Dirac’s method
used in the first part of this paper with the formulation in this
section we conclude that Dirac’s method is more advantageous
since it does not require additional averages.

6. Summary

In this paper we have introduced a method which solves the
quantum mechanical problem for high genus materials. The
global phase of the wavefunction for geometrical structures
such as double rings has been computed using the method
of constraints. This method is applicable to a variety of
problems where coherence of the wavefunction is important.
As an explicit example we have presented the first solution
for persistent currents in two coupled rings. Using numerical
simulations we have computed the current dependence on the
flux, temperature and the number of sites. This theory might
be tested in coupled rings for equal and opposite fluxes in
the ballistic regime. A possible explanation of the experiment
in [17] based on the ballistic theory has been proposed.
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